Polynomial Wolff axioms and Kakeya-type estimates for bent tubes

Will Fisher Mentor: Robert Burklund

Liberal Arts and Science Academy

May 20, 2018 MIT PRIMES Conference • How big is the volume of the union of a set of tubes?

• How big is the volume of the union of a set of tubes?

Definition

Let *L* be a line segment. A δ -tube is the δ -neighborhood of *L*.

- ₹ 🖬 🕨

• How big is the volume of the union of a set of tubes?

Definition

Let L be a line segment. A δ -tube is the δ -neighborhood of L.

Kakeya Conjecture

Let \mathbb{T} be a set of tubes in \mathbb{R}^n pointing in δ -separated directions. Assume this set to be maximal size, i.e. $|\mathbb{T}| \sim \delta^{1-n}$. Then up a loss factor of $\delta^{-\epsilon}$, the volume of the union of these tubes is roughly one, that is

$$\left|\bigcup_{T\in\mathbb{T}}T\right|\geq C_{\epsilon}\delta^{\epsilon}$$

Notation

Definition

Let A and B be (take on) real numbers. Writing $A \lesssim B$ means there exists a constant C such that $A \leq CB$. Writing $A \sim B$ means $A \lesssim B$ and $B \lesssim A$.

Definition

Let A and B be real numbers. Writing $A \leq B$ means for all $\epsilon > 0$, there exists a constant C_{ϵ} such that $A \leq C_{\epsilon}\delta^{-\epsilon}B$. Similarly, $A \approx B$ denotes that $A \leq B$ and $B \leq A$.

Example

Let \mathbb{T} be a set of tubes in \mathbb{R}^n pointing in δ -separated directions. Assume this set to be maximal size, i.e. $|\mathbb{T}| \sim \delta^{1-n}$. Then,

$$\left| \bigcup_{T \in \mathbb{T}} T \right| \gtrsim 1$$

Notation

Definition

Let A and B be (take on) real numbers. Writing $A \lesssim B$ means there exists a constant C such that $A \leq CB$. Writing $A \sim B$ means $A \lesssim B$ and $B \lesssim A$.

Definition

Let A and B be real numbers. Writing $A \lesssim B$ means for all $\epsilon > 0$, there exists a constant C_{ϵ} such that $A \leq C_{\epsilon} \delta^{-\epsilon} B$. Similarly, $A \approx B$ denotes that $A \lesssim B$ and $B \lesssim A$.

Example

Let \mathbb{T} be a set of tubes in \mathbb{R}^n pointing in δ -separated directions. Assume this set to be maximal size, i.e. $|\mathbb{T}| \sim \delta^{1-n}$. Then,

$$\left| \bigcup_{T \in \mathbb{T}} T \right| \gtrsim 1$$

Notation

Definition

Let A and B be (take on) real numbers. Writing $A \lesssim B$ means there exists a constant C such that $A \leq CB$. Writing $A \sim B$ means $A \lesssim B$ and $B \lesssim A$.

Definition

Let A and B be real numbers. Writing $A \lesssim B$ means for all $\epsilon > 0$, there exists a constant C_{ϵ} such that $A \leq C_{\epsilon} \delta^{-\epsilon} B$. Similarly, $A \approx B$ denotes that $A \lesssim B$ and $B \lesssim A$.

Example

Let \mathbb{T} be a set of tubes in \mathbb{R}^n pointing in δ -separated directions. Assume this set to be maximal size, i.e. $|\mathbb{T}| \sim \delta^{1-n}$. Then,

$$\bigcup_{T\in\mathbb{T}} T \Big| \gtrsim 1$$

• You can break it up into multilinear pieces

- Assume tubes point in k, k = 1, ..., n, linearly independent directions
- 1-linear
 - Use induction on scales
- n-linear
 - Bennett-Carbery-Tao
- 2-linear and 3-linear are harder
 - Naive approach: Add extra direction and apply 4-linear

- You can break it up into multilinear pieces
- Assume tubes point in k, k = 1, ..., n, linearly independent directions
- 1-linear
 - Use induction on scales
- n-linear
 - Bennett-Carbery-Tao
- 2-linear and 3-linear are harder
 - Naive approach: Add extra direction and apply 4-linear

- You can break it up into multilinear pieces
- Assume tubes point in k, k = 1, ..., n, linearly independent directions
- 1-linear
 - Use induction on scales
- n-linear
 - Bennett-Carbery-Tao
- 2-linear and 3-linear are harder
 - Naive approach: Add extra direction and apply 4-linear

- You can break it up into multilinear pieces
- Assume tubes point in k, k = 1, ..., n, linearly independent directions
- 1-linear
 - Use induction on scales
- n-linear
 - Bennett-Carbery-Tao
- 2-linear and 3-linear are harder
 - Naive approach: Add extra direction and apply 4-linear

- You can break it up into multilinear pieces
- Assume tubes point in k, k = 1, ..., n, linearly independent directions
- 1-linear
 - Use induction on scales
- n-linear
 - Bennett-Carbery-Tao
- 2-linear and 3-linear are harder
 - Naive approach: Add extra direction and apply 4-linear

Wolff vs. Polynomial Wolff

• We add assumptions about the tubes

Linear Wolff

Not too many tubes lie within a hyperplane. That is at most t/δ tubes lie within the rectangular prism of dimensions $1 \times t \times \delta \times \cdots \times \delta$.

Polynomial Wolff

Not too many tubes lie within the neighborhood of an algebraic variety. That is for any semi-algebraic set of complexity E there is a constant K_E such that for all $\lambda \geq \delta$

$\#\{T \in \mathbb{T} : |T \cap S| \ge \lambda |T|\} \le K_E |S| \delta^{1-n} \lambda^{-n}$

Wolff vs. Polynomial Wolff

• We add assumptions about the tubes

Linear Wolff

Not too many tubes lie within a hyperplane. That is at most t/δ tubes lie within the rectangular prism of dimensions $1 \times t \times \delta \times \cdots \times \delta$.

Polynomial Wolff

Not too many tubes lie within the neighborhood of an algebraic variety. That is for any semi-algebraic set of complexity E there is a constant K_E such that for all $\lambda \geq \delta$

 $\#\{T \in \mathbb{T} : |T \cap S| \ge \lambda |T|\} \le K_E |S| \delta^{1-n} \lambda^{-n}$

Wolff vs. Polynomial Wolff

• We add assumptions about the tubes

Linear Wolff

Not too many tubes lie within a hyperplane. That is at most t/δ tubes lie within the rectangular prism of dimensions $1 \times t \times \delta \times \cdots \times \delta$.

Polynomial Wolff

Not too many tubes lie within the neighborhood of an algebraic variety. That is for any semi-algebraic set of complexity E there is a constant K_E such that for all $\lambda \geq \delta$

 $\#\{T \in \mathbb{T} : |T \cap S| \ge \lambda |T|\} \le K_E |S| \delta^{1-n} \lambda^{-n}$

• Guth and Zahl's trilinear bounds are amiable to certain bent tubes

Definition

A bent $\delta\text{-tube}$ is an algebraic curve of degree $\lesssim 1$ and $C^2\text{-norm}$ \lesssim 1.

• Exact trilinear bound can shown to carry over but more work necessary for other tubes

• Guth and Zahl's trilinear bounds are amiable to certain bent tubes

Definition

A bent $\delta\text{-tube}$ is an algebraic curve of degree $\lesssim 1$ and $C^2\text{-norm}$ \lesssim 1.

• Exact trilinear bound can shown to carry over but more work necessary for other tubes

Trilinear Bound

Let $\mathbb T$ be a set of bent $\delta\text{-tubes}$ in $\mathbb R^4$ that satisfy the polynomial Wolff axioms, then

$$\int \Big(\sum_{T_1, T_2, T_3 \in \mathbb{T}} \chi_{T_1} \chi_{T_2} \chi_{T_3} |v_1 \wedge v_2 \wedge v_3|^{12/13} \Big)^{13/27} \lesssim \kappa^{1/9} \delta^{-1/3} (\delta^3 |\mathbb{T}|)^{4/3}$$

where
$$K = \max_{1 \le E \le d(\epsilon)} K_E$$
.

• $v_i(x)$ is the unit tangent vector to T_i at x

•
$$\chi_{T_i}(x) = \begin{cases} 1 & x \in T_i \\ 0 & \text{otherwise} \end{cases}$$

Remark: Choosing ϵ smaller and reducing the error $\delta^{-\epsilon}$ requires use of higher degree algebraic varieties.

• Consider broader categories of bent tubes

Definition

A bent δ -tube is the δ -neighborhood of a length C^k -curve with C^k -norm $\lesssim 1$.

Modified Polynomial Wolff Axiom

Let Ω be a C^k surface with C^k -norm $\leq C$, then there exists a constant K_C such that for all $\lambda \geq \delta$ and r > 0 we have

 $\#\{T : |T \cap N_r(\Omega)| \ge \lambda |T|\} \le K_C |N_r(\Omega)| \delta^{1-n} \lambda^{-n}$

where $N_r(\Omega)$ is the *r*-neighborhood of Ω .

- Robert Burklund
- MIT PRIMES program and MIT Math Department
- Ms. Harrelson